Asymmetric Synthesis of anti- α-Alkyl- β-amino Acids

Stephen G. Davies* and lain A. S. Walters

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 30Y, UK

Abstract

An investigation into the asymmetric induction accompanying alkylations of enolates derived from the highly diastereoselective conjugate addition of lithium (R)- N-benzyl- N - α-methylbenzylamide $(R)-1$ to crotonate and cinnamate esters has been performed. The access to different enolate geometries afforded by the conjugate addition process and subsequent enolate regeneration by deprotonation of the β-amino ester conjugate adducts enabled two disparate sets of selectivity data to be compiled. Although both approaches furnished predominantly anti- α-alkyl- β-amino esters, the two-step procedure proved to be considerably more selective. Several factors which play a major role in determining the alkylation selectivity are identified, including the cooperative influence of the α-methylbenzylamino stereocentre. Since debenzylation and hydrolysis of the alkylated products was straightforward, this methodology provides a direct route to anti- α-alkyl- β-amino acids in homochiral form.

The conjugate addition of a nucleophile to a polarized π-system is an invaluable synthetic tool, particularly when followed by the tandem capture of the conjugate adduct intermediates with electrophiles. We have previously demonstrated that lithium (R)- N-benzyl- N - α-methylbenzylamide $(R)-1$ shows a very high degree of diastereoselection in its conjugate addition to α, β unsaturated esters where the intermediate enolates are simply protonated. ${ }^{1}$ Since the conjugate addition products are easily hydrolysed and debenzylated, this constitutes a general route for the synthesis of homochiral β-amino acids which contain only a β-stereogenic centre (Scheme 1).

Scheme 1
With the aim of extending this methodology to include α -alkyl- β-amino acids, we have surveyed the alkylation selectivities elicited by quenching with alkyl halides the β-amino enolates generated by the conjugate addition of $(R)-1$ to crotonate and cinnamate esters, and describe herein this approach to the asymmetric synthesis of anti- α-alkyl- β-amino acids. Part of this work has been previously communicated. ${ }^{2}$

In addition to their incorporation into β-lactam antibiotics such as thienamycin ${ }^{3}$ and $(+)$-(PS)- $5,{ }^{4} \alpha$-alkyl $-\beta$-amino acids can be found as components of several biologically interesting natural products, ${ }^{5}$ and may also exhibit significant bacteriological and fungicidal properties in themselves. ${ }^{6}$ However, few general approaches to their enantioselective synthesis have been reported, with the most successful strategies based on diastereoselective enolate-imine condensations ${ }^{7}$ or alkylations of cyclic β-amino acid synthetic equivalents. ${ }^{8}$

Results and Discussion

The first set of alkylation selectivity data was obtained from the tandem addition-alkylation of (R) - 1 with the methyl and tertbutyl esters of crotonic and cinnamic acids (Schemes 2-5). The conjugate additions were performed in THF at $-78^{\circ} \mathrm{C}$,

Scheme 2

Scheme 3

$17 R=M e$	$17: 18 \geq 13: 161 \%$	$18 R=M e$
$19 R=B n$	$19: 20=3: 155 \%$	$20 R=B n$
$21 R=$ Allyl	$21: 22=3: 179 \%$	$22 R=$ Allyl

Scheme 4
generating the intermediate β-amino enolates in $\geqslant 95 \%$ d.e. as reported previously. ${ }^{1,2}$ The alkylations were allowed to warm gradually from $-78^{\circ} \mathrm{C}$ to ambient temperature overnight, and all diastereoselectivities determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

With the exception of the tandem methylation of methyl cinnamate 4, these results indicate a disappointingly small preference for the anti product diastereoisomer in these tandem

Scheme 5
alkylations. The low magnitude of the stereocontrol deterred further investigation into this type of system. Instead, a stepwise approach was next adopted, in which the proton-quenched conjugate adducts $6,11,16$ and 23 were first isolated before subsequent re-deprotonation with lithium diisopropylamide (LDA) or potassium hexamethyldisilazide (KHMDS), followed by alkylation as before (Schemes 6-9).

Scheme 7

Scheme 8
As with the tandem alkylations, the stepwise reactions show a preference for the anti diastereoisomer. This is particularly the case for the methylations, whose stereoselectivities are of sufficient magnitude for the alkylations to be synthetically useful. The alkylations of the methyl cinnamate adduct 16 show that variation in halide leaving group or enolate counterion has little effect on the stepwise alkylation selectivity. One of the most distinctive features of the results presented above is the tendency for the stepwise alkylation selectivities to exceed those of

the tandem reactions. This trend is highlighted by the methylations of tert-butyl cinnamate 5 : whereas the tandem reaction is virtually non-selective, the stepwise reaction affords almost exclusively the anti diastereoisomer 24. This is, presumably, a consequence of the different enolate geometries involved in the two modes of alkylation. Evidence for the intermediacy of different enolates came from quenching the β-amino ester enolates derived from tert-butyl cinnamate with trimethylsilyl chloride. Conjugate addition of (R) - 1 to compound 5 afforded a single silyl ketene acetal 28, whereas deprotonation of the adduct 23 gave predominantly the alternative isomer 29 although a small amount of 28 was detectable (Scheme 10). Unfortunately, all attempts to assign the double bond geometry of these two silyl ketene acetals by ${ }^{1} \mathrm{H}$ NMR NOE difference experiments were rewarded with inconclusive results. However, the related experiments ${ }^{9}$ of Yamamoto and coworkers performed with lithium benzyltrimethylsilylamide and methyl crotonate provide strong literature precedent for the stereochemical assignments made in Scheme 10.

Scheme 10
Surprisingly, the 3-C configuration of these enolates was found to be by no means the sole determinant of the anti selectivity of these alkylation reactions. The tandem and stepwise methylations of tert-butyl cinnamate 5 with achiral lithium dibenzylamide 30 were performed with the expectation that they would give rise to similar selectivities as the corresponding reactions of $(R)-1$. However, in marked contrast, the tandem methylation was found to favour the syn adduct 31 (shown by subsequent debenzylation to give compound 32), whereas the stepwise reaction was essentially non-selective (Scheme 11). These results implicate the configuration of the distant α-methylbenzylamino stereocentre as a significant influence on the tandem and stepwise alkylation selectivities of the lithium amide 1.

The 2-C-3-C relative stereochemistry of the alkylated conjugate adducts was assigned on the basis of several deprotection reactions. Debenzylation of the methylated methyl or tert-butyl cinnamate adducts 17 and 24 proved straightforward, and the resultant primary β-amino esters 35 and 36 could

be either hydrolysed to the same β-amino acid $\mathbf{3 8}$ or cyclized to the known β-lactam 37 (Scheme 12). Identification of this latter

Scheme 12
compound established the anti stereochemistry of 17 and 24, and also the syn stereochemistry of 31 since $\mathbf{3 6}$ and $\mathbf{3 2}$ were different.

Unlike the methylated adducts 17 and 24, the bulkier α benzylated adduct 19 was resistant to hydrolysis conditions, though reduction with lithium aluminium hydride to the alcohol 42 proceeded smoothly. However, the debenzylated amino ester 40 was susceptible to acidic hydrolysis, yielding the same amino acid hydrochloride 41 as produced from the analogous additionbenzylation of N, N-dimethyl cinnamide, ${ }^{10}$ thus establishing the anti-relative stereochemistry of 41, 40 and 19 (Scheme 13).
The alkylations of homochiral β-amino enolates described above indicate that a variety of factors are responsible for determining the extent of diastereofacial discrimination shown by an incoming electrophile. Not surprisingly, the size of the 3-C substituents, enolate geometry and nature of the electrophile are all important, but so too may be the presence of an additional, more distant stereogenic centre. Since the products of these alkylations are easily deprotected, the more selective of these, such as the stepwise methylations, provide a synthetically useful route to anti- α-alkyl- β-amino acids.

Experimental

Specific rotations were determined using a Perkin-Elmer 241 polarimeter with a thermally jacketted 10 cm cell and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Elemental analyses were performed

42
Scheme 13
by the Dyson Perrins analytical department. Melting points were recorded on a Gallenkamp hot-stage apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer either as chloroform solutions in 1.0 mm NaCl cells or as Nujol mulls. Unless otherwise stated, all NMR spectra were recorded using samples dissolved in deuteriochloroform and referenced with respect to residual protio solvent as an internal standard. All chemical shifts are quoted in parts per million relative to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) and coupling constants (J) are measured in Hz . Three instruments were used to obtain ${ }^{1} \mathrm{H}$ NMR spectra, a Varian Gemini 200 and Bruker AM500 and WH300 spectrometers, with the former two also providing ${ }^{13} \mathrm{C}$ NMR spectra with DEPT editing. Mass spectra were recorded on a VG MASSLAB VG 20-250 instrument. Flash column chromatography was performed on silica gel (Kieselgel 60). Tetrahydrofuran (THF) and toluene were distilled from sodium benzophenone ketyl under an atmosphere of dry nitrogen. Petroleum refers to light petroleum (b.p. $40-60^{\circ} \mathrm{C}$), redistilled before use. Reactions involving lithium amides were performed under an atmosphere of dry nitrogen. In every case, reaction diastereoselectivities were determined by peak integration of the crude reaction products' ${ }^{1}$ H NMR spectra. All new compounds were fully characterized; data for compounds 6, 11, 16, 23 and 32 will be reported elsewhere. ${ }^{11,12}$

Procedure for Conjugate Additions to Ester Acceptors.-(a) A solution of $(R)-(+)-N$-benzyl- N - α-methylbenzylamine ${ }^{13}$ (3.2 $\mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ prior to the slow addition of butyllithium ($\left.1.6 \mathrm{~mol} \mathrm{dm}^{-3} ; 3.0 \mathrm{mmol}\right)$. The resultant pink solution of the lithium amide $(R)-1(3.0 \mathrm{mmol})$ was stirred for 30 min , after which a THF $\left(2 \mathrm{~cm}^{3}\right)$ solution of the requisite conjugate acceptor (2.0 mmol) was added dropwise to it by syringe. Stirring was continued for 2 h at $-78^{\circ} \mathrm{C}$ and then the reaction quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to the reaction mixture. This was allowed to warm to room temp. over 30 min after which it was evaporated under reduced pressure. The residue was partitioned between brine and diethyl etherdichloromethane ($1: 1$) and the organic phase subsequently dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and then concentrated to furnish the crude conjugate adduct.

Procedure for Tandem Conjugate Additions-Alkylations of Ester Acceptors.- (b) The conjugate addition of $(R)-1$ (3.2 $\mathrm{mmol})$ to the requisite conjugate acceptor $(2.0 \mathrm{mmol})$ was performed as described in procedure (a). However, in this case
the reaction was quenched by the addition of neat alkyl halide (9.0 mmol) and then allowed to warm gradually to room temp. over 15 h , unless otherwise stated. Work-up, as described in procedure (a), furnished the crude alkylated conjugate adducts.

Procedure for Stepwise Alkylations of Ester Conjugate Adducts.-(c) A solution of the requisite conjugate adduct (2.0 mmol) in THF ($2 \mathrm{~cm}^{3}$) was added dropwise to a solution of lithium diisopropylamide (LDA) (3.0 mmol) in THF ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then neat alkyl halide (9.0 mmol) injected into it by syringe. The reaction mixture was allowed to warm gradually to room temp. over 15 h . Work-up, as described in procedure (a), then furnished the crude alkylated conjugate adducts.

Procedure for Pd-C Catalysed Debenzylations.-(d) The requisite conjugate adduct (1.0 mmol) and $\mathrm{Pd}-\mathrm{C}(30 \%$ by mass $)$ were placed in a Fischer-Porter bottle which was flushed with argon prior to charging with acetic acid $\left(5 \mathrm{~cm}^{3}\right)$. The reaction mixture was placed under a hydrogen atmosphere (4 bar) and stirred vigorously at $50^{\circ} \mathrm{C}$ overnight. The reaction mixture was then filtered through a plug of Celite, washing through with methanol, and the filtrate concentrated to give a white solid. This residue was dissolved in sat. aq. NaHCO_{3} which was subsequently extracted with dichloromethane. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to afford the debenzylated product.

Conjugate Addition to Methyl Crotonate 2.-The conjugate addition of $(R)-1(13.8 \mathrm{mmol})$ to methyl crotonate $2(1.26 \mathrm{~g}, 12.5$ mmol) was performed according to procedure (a). Purification of the crude product by flash column chromatography on silica gel with a petroleum-diethyl ether (4:1) eluent afforded the conjugate adduct 6 as a colourless oil ($2.92 \mathrm{~g}, 75 \%$).

Tandem Addition-Methylation of Methyl Crotonate 2.-The conjugate addition of $(R)-1(3.00 \mathrm{mmol})$ to methyl crotonate 2 ($200 \mathrm{mg}, 2.00 \mathrm{mmol}$) followed by alkylation with methyl iodide ($1.0 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) was carried out according to procedure (b). Purification of the crude product, which contained the product diastereoisomers 7 and 8 in the ratio of $1.2: 1$, was achieved by flash column chromatography on silica gel with a dichloromethane eluent. First eluted was compound 8 with a d.e. of 95% ($152 \mathrm{mg}, 23 \%$), followed by a mixed fraction and finally compound 7 with a d.e. of 87% ($132 \mathrm{mg}, 20 \%$), all as colourless oils; the combined product yield was 50%.

Methyl (2S,3R, $\alpha \mathrm{R}$)-3-(N-benzyl- $\mathrm{N}-\alpha$-methylbenzylamino)-2methylbutyrate $(2 \mathrm{~S}, 3 \mathrm{R}, \alpha \mathrm{R})-8 .[\alpha]_{\mathrm{D}}^{25}-12.4\left(c 2.50\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: C, 77.4; H, 8.5; N, 4.0. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.50$; $\mathrm{H}, 8.36 ; \mathrm{N}, 4.30 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.40-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.97(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{PhCHN})$, 3.80 and $3.70\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}} 14.0, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.60(3 \mathrm{H}, \mathrm{s}$, OMe), $2.97(1 \mathrm{H}, \mathrm{dq}, J 6.7$ and $9.4, \mathrm{MeCHN}), 2.41(1 \mathrm{H}, \mathrm{dq}, J 6.9$ and 9.4, $\left.\mathrm{CHCO}_{2}\right), 1.42(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}), 1.12(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{MeCH})$ and $0.89(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $177.1\left(\mathrm{CO}_{2}\right), 144.3$ and $141.3\left(\mathrm{PhC}_{i p s o}\right), 129.1,128.3$ and 128.0 $(\mathrm{Ph}), 127.0$ and $126.8\left(\mathrm{PhC}_{\text {para }}\right), 56.8$ and $54.2(\mathrm{CHN}), 51.3$ $(\mathrm{OMe}), 50.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 45.2(\mathrm{CHCO}), 15.7,15.2$ and 14.4 (MeCH) ; m/z $326\left(\mathrm{MH}^{+}, 100 \%\right.$), 238 (80, $\mathrm{MH}^{+}-\mathrm{MeCH}_{2^{-}}$ $\mathrm{CO}_{2} \mathrm{Me}$), 236 (35, $\left.\mathrm{MH}^{+}-\mathrm{PhCH}\right), 134\left(40, \mathrm{MeCH}=\mathrm{NH}^{+}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $105\left(35, \mathrm{PhCHCH}_{3}{ }^{+}\right)$.

Methyl (2R,3R, $\alpha \mathrm{R}$)-3-(N -benzyl- N - α-methylbenzylamino)-2methylbutyrate (2R,3R, α R)-7. (Found: C, 77.3; H, 8.6; N, 4.1. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.50 ; \mathrm{H}, 8.36 ; \mathrm{N}, 4.30 \%$; ; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.17$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.97(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{PhCHN}), 3.81$ and $3.65(2 \mathrm{H}$, AB system, $\left.J_{\mathrm{AB}} 14.1, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.21(1 \mathrm{H}$, $\mathrm{dq}, J 6.7$ and $9.7, \mathrm{MeCHN}), 2.55(1 \mathrm{H}, \mathrm{dq}, J 7.0$ and 9.7 , $\left.\mathrm{CHCO}_{2}\right), 1.39(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}), 1.10(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH})$
and $0.99(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.4$ $\left(\mathrm{CO}_{2}\right), 144.4$ and $141.3\left(\mathrm{PhC}_{i p s o}\right), 129.2,128.2$ and $127.9(\mathrm{Ph})$, 126.8 and $126.6\left(\mathrm{PhC}_{\text {para }}\right), 57.2$ and $55.1(\mathrm{CHN}), 51.1(\mathrm{OMe})$, $49.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 45.6(\mathrm{CHCO}), 15.4,14.9$ and $14.0(\mathrm{MeCH}) ; m / z$ $326\left(\mathrm{MH}^{+}, 100 \%\right), 238\left(80, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 236(45$, $\left.\mathrm{MH}^{+}-\mathrm{PhCH}\right), 134\left(45, \mathrm{MeCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $105(40$, PhCHMe ${ }^{+}$.

Tandem Addition-Benzylation of Methyl Crotonate 2.-The conjugate addition of $(R)-1(4.49 \mathrm{mmol})$ to methyl crotonate 2 ($300 \mathrm{mg}, 3.00 \mathrm{mmol}$) followed by alkylation with benzyl bromide ($0.89 \mathrm{~cm}^{3}, 7.5 \mathrm{mmol}$) was carried out according to procedure (b). Purification of the crude oil by flash column chromatography on silica gel with a petroleum-diethyl ether ($10: 1$) eluent gave the benzylated products as a $3: 1$ mixture of diastereoisomers ($644 \mathrm{mg}, 54 \%$). Separation of these products was achieved by flash column chromatography on silica gel with a petroleum-dichloromethane ($2: 1$) eluent. First eluted was the major product $9(382 \mathrm{mg}, 32 \%)$, subsequently recrystallized from methanol, followed by a mixed fraction and finally the minor product $10(78 \mathrm{mg}, 6 \%)$ as a colourless oil.

Major diastereoisomer: methyl (2R,3R, $\alpha \mathrm{R})$-2-benzyl-3-(N-benzyl- $\mathrm{N}-\alpha$-methylbenzylamino) butyrate $(2 \mathrm{R}, 3 \mathrm{R}, \alpha \mathrm{R})-9 . \quad[\alpha]_{\mathrm{D}}^{25}$ +36.9 ($c 1.03$ in CHCl_{3}); m.p. $65^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 80.5 ; \mathrm{H}, 7.7 ; \mathrm{N}$, 3.4. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.76 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46-6.87$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.02(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{PhCHN}), 3.88$ and $3.76(2 \mathrm{H}$, AB system, $\left.J_{\mathrm{AB}} 14.0, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.10(1 \mathrm{H}$, $\mathrm{dq}, J 6.7$ and $9.4, \mathrm{MeCHN}), 3.04$ and $2.09(2 \mathrm{H}, \mathrm{AB}$ of ABX system, $J_{\mathrm{AB}} 13.7, J_{\mathrm{Ax}} 3.8$ and $\left.J_{\mathrm{BX}} 11.7, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.59(1 \mathrm{H}$, ddd, $J 3.8,9.4$ and $\left.11.7, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.44(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH})$ and $1.14(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.8$ $\left(\mathrm{CO}_{2}\right), 144.4,141.3$ and $140.5\left(\mathrm{PhC}_{i p s o}\right), 129.3,128.8,128.7$, 128.5 and $128.3(\mathrm{Ph}), 127.3,127.1$ and $126.2\left(\mathrm{PhC}_{\text {para }}\right), 57.3$ and $53.9(\mathrm{CHN}), 53.9(\mathrm{CHCO}), 51.1(\mathrm{OMe}), 50.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 36.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 15.0$ and $14.8(\mathrm{MeCH}) ; m / z 402\left(\mathrm{MH}^{+}, 75 \%\right), 238$ $\left(100, \mathrm{MH}^{+}-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$ and $134\left(20, \mathrm{MeCH}=\mathrm{NH}^{+}\right.$ $\mathrm{CH}_{2} \mathrm{Ph}$).

Minor diastereoisomer: methyl (2S,3R, α R)-2-benzyl-3-(N-benzyl- N - α-methylbenzylamino) butyrate $(2 \mathrm{~S}, 3 \mathrm{R}, \alpha \mathrm{R})-10$. $[\alpha]_{\mathrm{D}}^{25}$ $+64.8\left(c 1.02\right.$ in CHCl_{3}) (Found: $\mathrm{C}, 80.8 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.2$. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.76 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49 \%$; $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41-7.02$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.99(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{PhCHN}), 3.88$ and $3.68(2 \mathrm{H}$, AB system, $\left.J_{\mathrm{AB}} 13.9, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.32(1 \mathrm{H}, \mathrm{dq}, J 6.7$ and 9.5 , MeCHN), 3.24 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.81 (1 H , ddd, $J 4.2,9.5$ and 11.6, $\left.\mathrm{PhCH}_{2} \mathrm{CH}\right), 2.70$ and $2.61\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX system, J_{AB} $13.1, J_{\mathrm{Ax}} 4.2$ and $\left.J_{\mathrm{BX}} 11.6, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.40(3, \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{MeCH})$ and $1.25(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $174.6\left(\mathrm{CO}_{2}\right), 144.3,141.1$ and $139.7\left(\mathrm{PhC}_{\text {ipso }}\right), 129.5,129.0$, $128.5,128.4$ and $128.1(\mathrm{Ph}), 127.1,126.8$ and $126.5\left(\mathrm{PhC}_{\text {para }}\right)$, 56.7 and $54.5(\mathrm{CHN}), 54.4(\mathrm{CHCO}), 50.9(\mathrm{OMe}), 50.2\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $36.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 15.1$ and $15.0(\mathrm{MeCH}) ; m / z 402\left(\mathrm{MH}^{+}, 70 \%\right)$, 238 (100, $\left.\mathrm{MH}^{+}-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$ and $134(15, \mathrm{MeCH}=$ $\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$).

Conjugate Addition to tert-Butyl Crotonate 3.-The conjugate addition of $(R)-1(10.6 \mathrm{mmol})$ to tert-butyl crotonate 3 $(1.00 \mathrm{~g}, 7.04 \mathrm{mmol})$ was performed according to procedure (a). Purification of the crude product by flash column chromatography on silica gel with a petroleum-diethyl ether ($10: 1$) eluent afforded the conjugate adduct 11 as a colourless oil ($1.25 \mathrm{~g}, 50 \%$).

Tandem Addition-Methylation of tert-Butyl Crotonate 3.The conjugate addition of $(R)-1(1.06 \mathrm{mmol})$ to tert-butyl crotonate $3(100 \mathrm{mg}, 0.70 \mathrm{mmol})$ followed by alkylation with methyl iodide ($0.22 \mathrm{~cm}^{3}, 3.5 \mathrm{mmol}$) was carried out according to procedure (b). Purification of the crude oil, which contained
compounds 12 and 13 in the ratio of $1.36: 1$, by flash column chromatography on silica gel with a dichloromethane eluent gave first the syn methylated adduct $13(90 \mathrm{mg}, 35 \%)$ followed by the anti adduct 12 ($64 \mathrm{mg}, 25 \%$), both as colourless oils.
tert-Butyl (2S,3R, $\alpha \mathrm{R}$)-3-(N-benzyl-N- α-methylbenzylamino)-2-methylbutyrate $(2 \mathrm{~S}, 3 \mathrm{R}, \alpha \mathrm{R})-13 .[\alpha]_{\mathrm{D}}^{25}-8.4$ (c 1.10 in CHCl_{3}) (Found: $\mathrm{C} 78.6 ; \mathrm{H}, 9.0 ; \mathrm{N}, 4.05 . \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires C , $78.43 ; \mathrm{H}, 9.05 ; \mathrm{N}, 3.81 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.18(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.96(1 \mathrm{H}, \mathrm{q}, J$ 6.8, PhCHN$), 3.80$ and $3.69\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 14.0, $\mathrm{PhCH}_{2} \mathrm{~N}$), $2.91(1 \mathrm{H}, \mathrm{dq}, J 6.6$ and 9.7, MeCHN$), 2.28(1 \mathrm{H}, \mathrm{dq}$, $J 6.9$ and $\left.9.7, \mathrm{CHCO}_{2}\right), 1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.41(3 \mathrm{H}, \mathrm{d}, J 6.8$, MeCH), 1.14 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}$) and $0.83(3 \mathrm{H}, \mathrm{d}, J 6.9$ $\mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.3\left(\mathrm{CO}_{2}\right), 144.5$ and 141.5 $\left(\mathrm{PhC}_{\text {ipso }}\right), 129.2,128.4$ and $128.0(\mathrm{Ph}), 127.0$ and $126.8\left(\mathrm{PhC}_{\text {para }}\right)$, $79.9\left(\mathrm{CMe}_{3}\right)$, 56.6 and $54.2(\mathrm{CHN}), 50.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.3(\mathrm{CHCO})$, $27.9\left(\mathrm{CMe}_{3}\right), 16.1,15.4$ and $14.5(\mathrm{MeCH}) ; m / z 368\left(\mathrm{MH}^{+}, 80 \%\right)$, 238 ($100, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}$), 134 (45, $\mathrm{MeCH}=\mathrm{NH}^{+}$ $\mathrm{CH}_{2} \mathrm{Ph}$), $105\left(40, \mathrm{PhCHMe}^{+}\right)$and $91\left(30, \mathrm{PhCH}_{2}{ }^{+}\right)$.
tert-Butyl (2R,3R, $\alpha \mathrm{R}$)-3-(N-benzyl- N - α-methylbenzylamino)-2-methylbutyrate $(2 \mathrm{R}, 3 \mathrm{R}, \alpha \mathrm{R})-12$. $[\alpha]_{\mathrm{D}}^{25}-22.2$ (c 1.00 in CHCl_{3}) (Found: $\mathrm{C}, 78.4 ; \mathrm{H}, 8.8 ; \mathrm{N}, 4.1 . \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires C , $78.43 ; \mathrm{H}, 9.05 ; \mathrm{N}, 3.81 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1715(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.17(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.01(1 \mathrm{H}, \mathrm{q}, J$ $6.9, \mathrm{PhCHN}), 3.71$ and $3.67\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 14.5, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.31(1 \mathrm{H}, \mathrm{dq}, J 6.9$ and $9.0, \mathrm{MeCHN}), 2.34(1 \mathrm{H}, \mathrm{dq}$, $J 7.0$ and $\left.9.0, \mathrm{CHCO}_{2}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.36(3 \mathrm{H}, \mathrm{d}, J 6.9$, $M e \mathrm{CH}), 0.96(3 \mathrm{H}, \mathrm{d}, J 6.9, M e \mathrm{CH})$ and $0.95(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.9\left(\mathrm{CO}_{2}\right), 144.4$ and 142.2 $\left(\mathrm{PhC}_{\text {ipso }}\right), 128.6,128.4$ and $128.0(\mathrm{Ph}), 126.7$ and $126.6\left(\mathrm{PhC}_{\text {para }}\right)$, $79.5\left(\mathrm{CMe}_{3}\right), 59.7$ and $56.2(\mathrm{CHN}), 49.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.2(\mathrm{CHCO})$, $28.0\left(\mathrm{CMe}_{3}\right), 17.7,14.6$ and $13.1(\mathrm{MeCH}) ; m / z 368\left(\mathrm{MH}^{+}\right.$, 100%), $238\left(60, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}\right), 134(15, \mathrm{MeCH}=$ $\left.\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right), 105\left(10, \mathrm{PhCHMe}^{+}\right)$and $91\left(10, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Tandem Addition-Benzylation of tert-Butyl Crotonate 3.The conjugate addition of $(R)-1(3.17 \mathrm{mmol})$ to tert-butyl crotonate $3(300 \mathrm{mg}, 2.11 \mathrm{mmol})$ followed by alkylation with benzyl bromide $\left(0.63 \mathrm{~cm}^{3}, 5.28 \mathrm{mmol}\right)$ was carried out according to procedure (b). Purification of the crude oil by flash column chromatography on silica gel with a petroleum-diethyl ether ($25: 1$) eluent gave the benzylated products as a $1: 1$ mixture of diastereoisomers ($396 \mathrm{mg}, 42 \%$). Separation of these products was achieved by flash column chromatography on silica gel with a petroleum-dichloromethane ($2: 1$) eluent. First eluted was compound 14 ($138 \mathrm{mg}, 15 \%$), subsequently recrystallized from methanol, followed by a mixed fraction and finally compound 15 ($68 \mathrm{mg}, 7 \%$) as a colourless oil.

Less polar diastereoisomer: tert-butyl ($2 \mathrm{R}, 3 \mathrm{R}, \alpha \mathrm{R}$)-2-benzyl-3-(N -benzyl- $\mathrm{N}-\alpha$-methylbenzylamino)butyrate ($2 \mathrm{R}, 3 \mathrm{R}, \alpha \mathrm{R}$)-14. $[\alpha]_{\mathrm{D}}^{25}+33.0\left(c 1.06\right.$ in CHCl_{3}); m.p. $70-72^{\circ} \mathrm{C}$ (Found: C , 81.1; $\mathrm{H}, 8.5 ; \mathrm{N}, 3.0 . \mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.22 ; \mathrm{H}, 8.41 ; \mathrm{N}$, $3.16 \%) ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1715 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.46-6.94(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.02(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{PhCHN})$, 3.91 and $3.76\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}} 14.0, \mathrm{PhC} \mathrm{H}_{2} \mathrm{~N}\right), 3.10-3.00(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{PhCH} \mathrm{CHCHN}^{2}\right), 2.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.94(1 \mathrm{H}$, dd, $J 13.8$ and $\left.12.0, \mathrm{PhCH}_{2} \mathrm{CH}\right), 1.44(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}), 1.18$ $(3 \mathrm{H}, \mathrm{d}, J .6 .5, \mathrm{MeCH})$ and $1.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 174.7\left(\mathrm{CO}_{2}\right), 144.4,141.4$ and $140.6\left(\mathrm{PhC}_{\text {ipso }}\right), 129.3$, 129.2, 129.0, 128.6, 128.5 and $128.2(\mathrm{Ph}), 127.2,127.0$ and 126.0 $\left(\mathrm{PhC}_{\text {para }}\right), 80.1\left(\mathrm{CMe}_{3}\right), 57.0$ and $54.2(\mathrm{CHN}), 53.8(\mathrm{CHCO})$, $50.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.7\left(\mathrm{CMe}_{3}\right), 15.2$ and 14.6 $(M e \mathrm{CH}) ; m / z 444\left(\mathrm{MH}^{+}, 100 \%\right), 238\left(90, \mathrm{MH}^{+}-\mathrm{PhCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}$) and $134\left(60, \mathrm{MeCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right)$.

More polar diastereoisomer: tert-butyl (2S,3R, $\alpha \mathrm{R}$)-2-benzyl-3-(N -benzyl- $\mathrm{N}-\alpha$-methylbenzylamino)butyrate ($2 \mathrm{~S}, 3 \mathrm{R}, \alpha \mathrm{R}$)-15. $[\alpha]_{\mathrm{D}}^{25}+42.3\left(c 1.06\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 81.0 ; \mathrm{H}, 8.25 ; \mathrm{N}$, 3.4. $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.22 ; \mathrm{H}, 8.41 ; \mathrm{N}, 3.16 \%$);
$\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41-$ $7.06(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.05(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{PhCHN}), 3.82$ and $3.70(2$ H, AB system, $\left.J_{\mathrm{AB}} 14.5, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.40(1 \mathrm{H}, \mathrm{dq}, J 8.5$ and 6.9 , $\mathrm{MeCHN}), 2.75-2.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH} \mathrm{CH}_{2}\right), 1.37(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{MeCH}), 1.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$ and $1.11(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.3\left(\mathrm{CO}_{2}\right), 144.3,142.0$ and 139.7 $\left(\mathrm{PhC}_{i p s o}\right), 129.5,129.2,128.5,128.2$ and $128.1(\mathrm{Ph}), 126.9,126.8$ and $126.2\left(\mathrm{PhC}_{\text {para }}\right), 79.9\left(\mathrm{CMe}_{3}\right), 59.4$ and $56.2(\mathrm{CHN}), 53.5$ $(\mathrm{CHCO}), 50.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 36.2\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.8\left(\mathrm{CMe}_{3}\right), 17.5$ and $14.2(\mathrm{MeCH}) ; \mathrm{m} / \mathrm{z} 444\left(\mathrm{MH}^{+}, 100 \%\right), 238\left(80, \mathrm{MH}^{+}-\right.$ $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}$) and $134\left(60, \mathrm{MeCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right)$.

Conjugate Addition to Methyl Cinnamate 4.-The conjugate addition of $(R)-1(25.0 \mathrm{mmol})$ to methyl cinnamate $4(2.85 \mathrm{~g}$, 17.6 mmol) was performed according to procedure (a). Purification of the crude product by flash column chromatography on silica gel with a dichloromethane eluent afforded the conjugate adduct 16 as a colourless oil $(5.07 \mathrm{~g}, 77 \%)$.

Tandem Addition-Methylation of Methyl Cinnamate 4.-The conjugate addition of $(R)-1(15.7 \mathrm{mmol})$ to methyl cinnamate 4 $(1.70 \mathrm{~g}, 10.5 \mathrm{mmol})$ followed by alkylation with methyl iodide ($5.00 \mathrm{~cm}^{3}, 80.3 \mathrm{mmol}$) was carried out according to procedure (b). Purification of the crude oil, which contained compound 17 in $\geqslant 86 \%$ d.e., was accomplished by crystallization from ethanol ($20 \mathrm{~cm}^{3}$) which yielded white crystals of compound 17 (1.90 g). Hexane ($20 \mathrm{~cm}^{3}$) was added to the mother liquor and the solution maintained at $-30^{\circ} \mathrm{C}$ for 20 h to give a further 0.58 g of compound 17 (total yield 61%). A sample of the syn diastereoisomer 18 (93% d.e.) was prepared by the tandem addition-protonation of (R)-1 with methyl (E)-2-methylcinnamate. ${ }^{12}$

Methyl ($2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-3-(N -benzyl- $\mathrm{N}-\alpha$-methylbenzylamino)-2-methyl-3-phenylpropionate $(2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R})-17$. $[\alpha]_{\mathrm{D}}^{25}-46.9$ (c 1.00 in CHCl_{3}); m.p. $110-112^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 80.8 ; \mathrm{H}, 7.7 ; \mathrm{N}$, 3.6. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.59 ; \mathrm{H}, 7.54 ; \mathrm{N}, 3.62 \%$); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41-$ $7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.17$ and $3.63\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 13.6, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 4.16(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{MeCHN}), 3.97(1 \mathrm{H}, \mathrm{d}, J 11.3$, $\mathrm{PhCHCH}), 3.57(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.28(1 \mathrm{H}, \mathrm{dq}, J 11.3$ and 6.8 , $\mathrm{CHCO}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH})$ and $0.76(3 \mathrm{H}, \mathrm{d}, J 6.8$, $M e \mathrm{CH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.0\left(\mathrm{CO}_{2}\right), 144.0,140.3$ and $139.1\left(\mathrm{PhC}_{\text {ipso }}\right), 129.4,129.3,128.6,128.4,128.3$ and $128.0(\mathrm{Ph})$, 127.6, 127.1 and $126.7\left(\mathrm{PhC}_{\text {para }}\right), 64.5$ and $55.5(\mathrm{CHN}), 51.4$ (OMe), $50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 43.0(\mathrm{CHCO}), 15.8$ and $13.9(\mathrm{MeCH}) ; m / z$ $388\left(\mathrm{MH}^{+}, 70 \%\right), 300\left(95, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 196$ (100, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), 105 (75, PhCHMe^{+}) and 91 (90, $\mathrm{PhCH}_{2}{ }^{+}$).

Methyl ($2 \mathrm{~S}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-3-(N -benzyl- $\mathrm{N}-\alpha$-methylbenzylamino)-2-methyl-3-phenylpropionate ($2 \mathrm{~S}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-18. $[\alpha]_{\mathrm{D}}^{25}-75.4$ (c 0.90 in $\mathrm{CHCl}_{3} ; 93 \%$ d.e.) (Found: $\mathrm{C}, 80.4 ; \mathrm{H}, 7.3 ; \mathrm{N}, 3.5 . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.59 ; \mathrm{H}, 7.54 ; \mathrm{N}, 3.62 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.43-7.27(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.16(1$ $\mathrm{H}, \mathrm{q}, J 6.7, \mathrm{MeCHN}), 3.95$ and $3.63\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.9$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.86(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{PhCHCH}), 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.21(1 \mathrm{H}, \mathrm{dq}, J 11.2$ and $6.9, \mathrm{CHCO}), 1.23(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH})$ and $0.92(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.1$ $\left(\mathrm{CO}_{2}\right), 144.8,140.3$ and $139.7\left(\mathrm{PhC}_{i p s o}\right), 129.3,129.0,128.5$, 128.2 and $128.0(\mathrm{Ph}), 127.4,127.1$ and $126.8\left(\mathrm{PhC}_{\text {para }}\right), 63.3$ and $55.4(\mathrm{CHN}), 51.1(\mathrm{OMe}), 50.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 42.9(\mathrm{CHCO}), 16.4$ and $14.5(\mathrm{MeCH}) ; m / z 388\left(\mathrm{MH}^{+}, 100 \%\right.$), 300 (40, $\mathrm{MH}^{+}-$ $\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 196 (65, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), 105 (30, PhCHMe^{+}) and $91\left(40, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Tandem Addition-Benzylation of Methyl Cinnamate 4.-The conjugate addition of $(R)-1(1.00 \mathrm{mmol})$ to methyl cinnamate 4 ($108 \mathrm{mg}, 0.67 \mathrm{mmol}$) followed by alkylation with benzyl bromide ($0.24 \mathrm{~cm}^{3}, 2.0 \mathrm{mmol}$) was carried out according to
procedure (b). Purification of the crude product by flash column chromatography on silica gel with a petroleum-diethyl ether (4:1) eluent gave a colourless oil containing the benzylated products 19 and 20 as a 3:1 mixture of diastereoisomers (170 $\mathrm{mg}, 55 \%$). A diastereomerically pure sample of compound 19 was prepared from the corresponding stepwise benzylation described below, and compound 20 was generated as a single diastereoisomer via the tandem addition-protonation of $(R)-1$ with tert-butyl (E)-2-benzylcinnamate ${ }^{12}$ after trifluoroacetic acid hydrolysis and methyl ester formation with diazomethane.

Methyl (2R,3S, α R)-2-benzyl-3-(N -benzyl- N - α-methylbenzyl-amino)-3-phenylpropionate ($2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-19. $[\alpha]_{\mathrm{D}}^{25}+14.8(c$ 1.10 in CHCl_{3}); m.p. $94-96^{\circ} \mathrm{C}$ (Found: C, 82.6; H, 7.5; N, 3.2. $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires $\mathrm{C}, 82.90 ; \mathrm{H}, 7.17 ; \mathrm{N}, 3.02 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.50-$ $6.90(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.23(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{PhCHCH}), 4.23(1 \mathrm{H}, \mathrm{q}, J$ $6.9, \mathrm{MeCHN}), 4.11$ and $3.67\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 12.6$, $\mathrm{PhCH}_{2} \mathrm{~N}$), 3.52 (1 H , ddd, J 11.6, 10.8 and 3.3, CHCO), 3.38 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.50$ and $2.28\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX system, $J_{\mathrm{AB}} 13.5, J_{\mathrm{AX}}$ 11.6 and $\left.J_{\mathrm{BX}} 3.3, \mathrm{PhCH}_{2} \mathrm{CH}\right)$ and $0.93(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.4\left(\mathrm{CO}_{2}\right), 144.5,140.0,139.7$ and $139.2\left(\mathrm{PhC}_{i p s o}\right), 129.5,129.4,128.9,128.8,128.6,128.3,128.1$ and $128.0(\mathrm{Ph}), 127.8,127.3,126.8$ and $126.5\left(\mathrm{PhC}_{\text {para }}\right), 63.7$ and 55.2 (CHN), 52.1 (CHCO), 51.2 (OMe), $50.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 36.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right)$ and $14.1(\mathrm{MeCH}) ; m / z 464\left(\mathrm{MH}^{+}, 15 \%\right), 300(100$, $\mathrm{MH}^{+}-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 196 (50, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), $105\left(40, \mathrm{PhCHMe}^{+}\right)$and $91\left(65, \mathrm{PhCH}_{2}{ }^{+}\right)$.
Methyl (2S,3S, α R)-2-benzyl-3-(N-benzyl- N - α-methylbenzyl-amino)-3-phenylpropionate ($2 \mathrm{~S}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-20. $[\alpha]_{\mathrm{D}}^{25}-43.7$ (c 0.99 in CHCl_{3}) (Found: $\mathrm{C}, 82.8 ; \mathrm{H}, 7.4 ; \mathrm{N}, 2.7 . \mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires $\mathrm{C}, 82.90 ; \mathrm{H}, 7.17 ; \mathrm{N}, 3.02 \%)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.51-6.97(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.25(1 \mathrm{H}, \mathrm{q}, J$ $6.9, \mathrm{MeCHN}), 4.08$ and $3.71\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.8$, $\mathrm{PhCH}_{2} \mathrm{~N}$), $4.03(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{PhCHCH}), 3.57$ and $2.38(2 \mathrm{H}$, AB of ABX system, $J_{\mathrm{AB}} 13.5, J_{\mathrm{Ax}} 3.5$ and $J_{\mathrm{BX}} 11.9, \mathrm{PhCH}_{2} \mathrm{CH}$), $3.34(1 \mathrm{H}, \mathrm{ddd}, J 11.9,11.1$ and $3.5, \mathrm{CHCO}), 3.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $1.00(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.6$ $\left(\mathrm{CO}_{2}\right), 145.0,140.4,140.2$ and $138.9\left(\mathrm{PhC}_{\text {ipso }}\right)$, 129.5, 129.4, 128.9, 128.8, 128.6, 128.3 and $128.1(\mathrm{Ph}), 127.7,127.4,127.1$ and $126.4\left(\mathrm{PhC}_{\text {para }}\right)$, 63.2 and 56.1 (CHN), 52.0 (CHCO), 50.9 (OMe), $50.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.4\left(\mathrm{CH}_{2} \mathrm{CH}\right)$ and $15.1(\mathrm{MeCH}) ; m / z 464$ $\left(\mathrm{MH}^{+}, 65 \%\right), 300\left(60, \mathrm{MH}^{+}-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 196$ ($95, \mathrm{PhCH}=\mathrm{NHCH}_{2} \mathrm{Ph}$), 105 (55, PhCHMe^{+}) and 91 (100 , $\mathbf{P h C H}_{2}{ }^{+}$).

Tandem Addition-Allylation of Methyl Cinnamate 4.-The conjugate addition of $(R)-1(3.00 \mathrm{mmol})$ to methyl cinnamate 4 $(324 \mathrm{mg}, 2.00 \mathrm{mmol})$ followed by alkylation with allyl bromide ($0.85 \mathrm{~cm}^{3}, 9.8 \mathrm{mmol}$) was carried out according to procedure (b). Purification of the crude product by flash column chromatography on silica gel with a dichloromethane eluent gave a pale yellow oil containing the allylated products 21 and 22 as a $3: 1$ mixture of diastereoisomers ($650 \mathrm{mg}, 79 \%$) which could not be separated. Compound 22 was characterized as this mixture and compound 21 as that prepared via the more selective stepwise allylation described below.

Methyl (2R,3S, $\alpha \mathrm{R}$)-2-allyl-3-(N -benzyl- $\mathrm{N}-\alpha$-methylbenzyl-amino)-3-phenylpropionate ($2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-21. (Found: $\mathrm{C}, 81.1 ; \mathrm{H}$, 7.9; $\mathrm{N}, 3.3 . \mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.32 ; \mathrm{H}, 7.56 ; \mathrm{N}, 3.39 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.45-$ $7.21(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.57-5.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 4.87-4.81(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.22$ and $3.65\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.6$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 4.19(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{MeCHN}), 4.02(1 \mathrm{H}, \mathrm{d}, J 11.3$, PhCHCH), 3.54 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.31 (1 H , ddd, J 3.6, 11.3 and 11.3, CHCO), 1.99-1.88 and 1.75-1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCO}$) and $0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{MeCH}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.4$ $\left(\mathrm{CO}_{2}\right), 144.3,140.1$ and $139.1\left(\mathrm{PhC}_{\text {ips }}\right), 135.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 129.4$, 128.7, 128.5, 128.3 and 128.1 (Ph), 127.8, 127.2 and 126.8
$\left(\mathrm{PhC}_{\text {para }}\right), 116.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 63.5$ and $55.3(\mathrm{CHN}), 51.2(\mathrm{OMe})$, $50.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.4(\mathrm{CHCO}), 34.9\left(\mathrm{CH}_{2} \mathrm{CHCO}\right)$ and 13.8 (MeCH); m/z $414\left(\mathrm{MH}^{+}, 100 \%\right.$), $300\left(45, \mathrm{MH}^{+}-\mathrm{CH}_{2}=\right.$ $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 196 (35, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), 105 (25, $\mathrm{PhCHMe}{ }^{+}$) and $91\left(40, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Methyl ($2 \mathrm{~S}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-2-allyl-3-(N -benzyl- N - α-methylbenzyl-amino)-3-phenylpropionate ($2 \mathrm{~S}, 3 \mathrm{~S}, \mathrm{\alpha}$)-22. (Found: $\mathrm{C}, 81.1 ; \mathrm{H}$, 7.7; N, 3.3. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.32 ; \mathrm{H}, 7.56$; $\mathrm{N}, 3.39 \%$); $\nu_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.43-\right.$ $7.22(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.68-5.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.98-4.94(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{MeCHN}), 3.95$ and $3.63(2 \mathrm{H}$, AB system, $\left.J_{\mathrm{AB}} 13.8, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.92(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{PhCHCH})$, $3.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.17$ ($1 \mathrm{H}, \mathrm{ddd}, J 3.4,11.2$ and 11.2 , CHCO), 2.94-2.90 and 1.99-1.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCO}$) and $0.97(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.8, MeCH$) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.0\left(\mathrm{CO}_{2}\right), 144.5,140.0$ and $138.9\left(\mathrm{PhC}_{\text {ipso }}\right), 135.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 129.1,129.0,128.4,128.0$ and $127.8(\mathrm{Ph}), 127.0,126.7$ and $126.4\left(\mathrm{PhC}_{\text {para }}\right), 116.2$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 62.6$ and $56.0(\mathrm{CHN}), 50.7(\mathrm{OMe}), 50.6\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $49.3(\mathrm{CHCO}), 35.3\left(\mathrm{CH}_{2} \mathrm{CHCO}\right)$ and $15.0(\mathrm{MeCH}) ; ~ m / z 414$ $\left(\mathrm{MH}^{+}, 35 \%\right), 300\left(100, \mathrm{MH}^{+}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, 196 (75, $\left.\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right), 105\left(50, \mathrm{PhCHCH}_{3}{ }^{+}\right)$and 91 ($55, \mathrm{PhCH}_{2}{ }^{+}$).

Conjugate Addition to tert-Butyl Cinnamate 5.-The conjugate addition of $(R)-1(14.7 \mathrm{mmol})$ to tert-butyl cinnamate 5 ($2.00 \mathrm{~g}, 9.80 \mathrm{mmol}$) was performed according to procedure (a). Purification of the crude product by flash column chromatography on silica gel with a petroleum-diethyl ether (10:1) eluent afforded the conjugate adduct 23 as a colourless oil (3.52 g, 87%).

Tandem Addition-Methylation of tert-Butyl Cinnamate 5.The conjugate addition of $(R)-1(2.21 \mathrm{mmol})$ to tert-butyl cinnamate $5(300 \mathrm{mg}, 1.47 \mathrm{mmol})$ followed by alkylation with methyl iodide ($0.45 \mathrm{~cm}^{3}, 7.3 \mathrm{mmol}$) was carried out according to procedure (b), except that the reaction was warmed to $-30^{\circ} \mathrm{C}$ for 20 min before the addition of methyl iodide at $-78^{\circ} \mathrm{C}$. Purification of the crude product by flash column chromatography on silica gel with a petroleum-diethyl ether (20:1) eluent gave a colourless oil containing the methylated adducts 24 and 25 as a $1.36: 1$ mixture of diastereoisomers (489 mg , 78%) which could not be separated. However, samples of 24 and 25 were prepared by stepwise methylation and tandem addition-protonation of tert-butyl (E)-2-methylcinnamate ${ }^{12}$ respectively, each with a diastereoisomeric purity of at least 94%.
tert-Butyl ($2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-3-(N -benzyl- N - α-methylbenzylamino)-2-methyl-3-phenylpropionate $(2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R})-24 .[\alpha]_{\mathrm{D}}^{25}-36.8(c$ 0.60 in CHCl_{3}) (Found: C, 81.2; H, 8.4; N, 3.25. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.08 ; \mathrm{H}, 8.21 ; \mathrm{N}, 3.26 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ $(\mathrm{C}=0)$) $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.44-7.16$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 4.16 (1 $\mathrm{H}, \mathrm{q}, J 6.9, \mathrm{MeCHN}), 4.08(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{PhCHCH}), 3.99$ and $3.57\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}} 14.2, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.11(1 \mathrm{H}, \mathrm{dq}, J 6.9$ and 11.1, CHCO), $1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.04(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{MeCH})$ and $0.74(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $175.3\left(\mathrm{CO}_{2}\right), 144.8,140.9$ and $138.9\left(\mathrm{PhC}_{\text {ipso }}\right), 129.7,129.3$, $128.5,128.4,128.1$ and $128.0(\mathrm{Ph}), 127.4,126.8$ and 126.7 $\left(\mathrm{PhC}_{\text {para }}\right), 80.0\left(\mathrm{CMe}_{3}\right), 65.0$ and $57.0(\mathrm{CHN}), 50.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, 43.7 (CHCO), 28.0 (CMe $)_{3}$, 16.2 and 15.5 (MeCH); m/z 430 $\left(\mathrm{MH}^{+}, 85 \%\right.$), 300 ($60, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{\dagger}$), 196 (100 , $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), 105 (50, PhCHMe^{+}) and 91 (60 , $\mathrm{PhCH}_{2}{ }^{+}$).
tert-Butyl (2S,3S, α R)-3-(N-benzyl- N - α-methylbenzylamino)-2-methyl-3-phenylpropionate (2S,3S, $\alpha \mathrm{R}$)-25. $[\alpha]_{\mathrm{D}}^{25}-68.1$ (c 1.00 in CHCl_{3}) (Found: C, 80.7; H, 8.5; N, 3.0. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.08 ; \mathrm{H}, 8.21 ; \mathrm{N}, 3.26 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.47-7.22(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.18(1$ $\mathrm{H}, \mathrm{q}, J 6.8, \mathrm{MeCHN}), 3.96$ and $3.60\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 13.7,
$\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.76(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{PhCHCH}), 3.07(1 \mathrm{H}, \mathrm{dq}, J 6.7$ and $11.2, \mathrm{CHCO}), 1.18(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}), 1.00(9 \mathrm{H}, \mathrm{s}$, CMe_{3}) and $0.93(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $175.0\left(\mathrm{CO}_{2}\right), 144.9,140.4$ and $140.0\left(\mathrm{PhC}_{i p s o}\right), 129.6,129.4$, $128.5,128.3$ and $128.1(\mathrm{Ph}), 127.3,127.1$ and $126.8\left(\mathrm{PhC}_{\text {para }}\right)$, $79.9\left(\mathrm{CMe}_{3}\right), 63.5$ and $55.3(\mathrm{CHN}), 50.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 43.9(\mathrm{CHCO})$, $27.3\left(\mathrm{CMe}_{3}\right)$, 16.4 and $14.4(\mathrm{MeCH}) ; m / z 430\left(\mathrm{MH}^{+}, 80 \%\right), 300$ ($60, \mathrm{MH}^{+}-\mathrm{MeCH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{r}$), 196 (100, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$), $105\left(35, \mathrm{PhCHMe}^{+}\right)$and $91\left(60, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Tandem Addition-Benzylation of tert-Butyl Cinnamate 5.The conjugate addition of $(R)-1(2.21 \mathrm{mmol})$ to tert-butyl cinnamate 5 ($300 \mathrm{mg}, 1.47 \mathrm{mmol}$) followed by alkylation with benzyl bromide ($0.52 \mathrm{~cm}^{3}, 4.41 \mathrm{mmol}$) was carried out according to procedure (b), except that the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$ for 1 h before the addition of benzyl bromide at $-78^{\circ} \mathrm{C}$. Partial purification of the crude oil, which contained both product diastereoisomers 26 and 27 in the ratio of $2.5: 1$, was achieved by flash column chromatography on silica gel with a petroleum-diethyl ether ($30: 1$) eluent. First compound 26 was eluted with a d.e. of $71 \%(161 \mathrm{mg}, 22 \%)$, then a mixed fraction ($180 \mathrm{mg}, 24 \%$) was collected, both isolated as colourless oils. Compound 27, however, was prepared in diastereomerically pure form by the tandem addition-protonation of (R) - 1 with (E)-tert-butyl 2-benzylcinnamate. ${ }^{12}$
tert-Butyl (2R,3S, $\alpha \mathrm{R}$) 2-benzyl-3-(N-benzyl- $\mathrm{N}-\alpha$-methyl-benzylamino)-3-phenylpropionate ($2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-26. (Found: C , 83.3; $\mathrm{H}, 7.95 ; \mathrm{N}, 2.7 . \mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{2}$ requires $\mathrm{C}, 83.13 ; \mathrm{H}, 7.77 ; \mathrm{N}$, $2.77 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.55-7.00(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.24(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{MeCHN}), 4.17$ and $3.66\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}} 14.1, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.16(1 \mathrm{H}, \mathrm{d}, J 10.8$, $\mathrm{PhCHCH}), 3.48\left(1 \mathrm{H}, \mathrm{td}, J 4.6\right.$ and $\left.10.8, \mathrm{PhCH}_{2} \mathrm{CH}\right), 2.41-2.28$ (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{PhCH} \mathrm{CH}_{2} \mathrm{CH}\right), 1.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.99(3 \mathrm{H}, J 6.7, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.8\left(\mathrm{CO}_{2}\right), 144.5,140.5,139.4$ and 139.0 $\left(\mathrm{PhC}_{i p s o}\right), 130.0,129.7,129.3,128.6,128.5,128.2$ and $128.0(\mathrm{Ph})$, 127.7, 127.0, 126.8 and $126.3\left(\mathrm{PhC}_{\text {para }}\right), 80.5\left(\mathrm{CMe}_{3}\right), 64.5$ and $56.5(\mathrm{CHN}), 51.0(\mathrm{CHCO}), 51.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.4\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.8$ $\left(\mathrm{CMe}_{3}\right)$ and $15.4(\mathrm{MeCH}) ; m / z 506\left(\mathrm{MH}^{+}, 100 \%\right), 300\left(90, \mathrm{MH}^{+}\right.$ $-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}$), 196 (75, $\mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}$).
tert-Butyl (2S,3S, α R)-2-benzyl-3-(N-benzyl- N - α-methyl-benzylamino)-3-phenylpropionate $(2 \mathrm{~S}, 3 \mathrm{~S}, \alpha \mathrm{R})-27$. $[\alpha]_{\mathrm{D}}^{25}-32.7$ (c 1.06 in CHCl_{3}) (Found: $\mathrm{C}, 83.2 ; \mathrm{H}, 7.7 ; \mathrm{N}, 2.5 . \mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{2}$ requires $\mathrm{C}, 83.13 ; \mathrm{H}, 7.77 ; \mathrm{N}, 2.77 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53-7.03(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.28(1 \mathrm{H}$, $\mathrm{q}, J 6.9, \mathrm{MeCHN}), 4.13$ and $3.70\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 13.7, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.95(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{PhCHCH}), 3.54$ and $2.33(2 \mathrm{H}$, AB of ABX system, $J_{\mathrm{AB}} 13.6, J_{\mathrm{AX}} 3.5$ and $\left.J_{\mathrm{BX}} 11.9, \mathrm{PhCH} \mathrm{C}_{2} \mathrm{CH}\right)$, 3.23 (1 H , ddd, $J 3.5,11.2$ and $11.9, \mathrm{PhCH}_{2} \mathrm{CH}$), 1.01 ($3 \mathrm{H}, \mathrm{d}, J$ 6.9, MeCH) and $0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.3$ $\left(\mathrm{CO}_{2}\right), 144.9,140.4$ and $139.2\left(\mathrm{PhC}_{i p s o}\right), 130.0,129.5,129.4$, 129.1, 128.7, 128.5, 128.3, 128.2 and $128.1(\mathrm{Ph}), 127.6,127.4$, 127.1 and $126.2\left(\mathrm{PhC}_{\text {para }}\right), 79.9\left(\mathrm{CMe}_{3}\right), 63.3$ and $55.8(\mathrm{CHN})$, $52.1(\mathrm{CHCO}), 50.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.4\left(\mathrm{CH}_{2} \mathrm{CH}\right), 27.2\left(\mathrm{CMe}_{3}\right)$ and $14.7(\mathrm{MeCH}) ; m / z 506\left(\mathrm{MH}^{+}, 20 \%\right), 300\left(100, \mathrm{MH}^{+}-\right.$ $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bu}^{t}$) and $196\left(80, \mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right)$.

Stepwise Methylation of the Methyl Crotonate Adduct 6.Deprotonation of compound $6(300 \mathrm{mg}, 0.96 \mathrm{mmol})$ with LDA $(1.25 \mathrm{mmol})$ followed by alkylation with methyl iodide (0.30 $\mathrm{cm}^{3}, 4.8 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude product by filtration through a plug of silica, washing with diethyl ether, afforded a colourless oil made up of the anti and syn methylated diastereoisomers 7 and 8 in the ratio of $5: 1(280 \mathrm{mg}, 89 \%)$.

Stepwise Benzylation of Methyl Crotonate Adduct 6.Deprotonation of compound $6(800 \mathrm{mg}, 2.57 \mathrm{mmol})$ with LDA (3.34 mmol) followed by alkylation with benzyl bromide (0.61
$\mathrm{cm}^{3}, 5.1 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude oil by flash column chromatography on silica gel with a petroleum-dichloromethane ($2: 1$) eluent afforded first compound $9(225 \mathrm{mg}, 22 \%$), followed by a mixed fraction, and then compound 10 ($219 \mathrm{mg}, 21 \%$); the combined product yield was 52%.

Stepwise Methylation of tert-Butyl Crotonate Adduct 11.Deprotonation of compound $11(500 \mathrm{mg}, 1.42 \mathrm{mmol})$ with LDA (2.12 mmol) followed by alkylation with methyl iodide (0.44 $\mathrm{cm}^{3}, 7.1 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude oil, which contained the product diastereoisomers 12 and 13 in the ratio of $9: 1$, was accomplished by flash column chromatography on silica gel with a petroleum-dichloromethane (1:1) eluent. After elution of a mixed fraction, pure compound $\mathbf{1 2}$ was obtained as a colourless oil ($289 \mathrm{mg}, 56 \%$); the combined product yield was 69%.

Stepwise Benzylation of tert-Butyl Crotonate Adduct 11.Deprotonation of compound $11(300 \mathrm{mg}, 0.85 \mathrm{mmol})$ with LDA $(1.10 \mathrm{mmol})$ followed by alkylation with benzyl bromide (0.20 $\mathrm{cm}^{3}, 1.7 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude product by flash column chromatography on silica gel with a petroleum-dichloromethane ($2: 1$) eluent gave first compound 14 ($177 \mathrm{mg}, 47 \%$), followed by compound 15 ($136 \mathrm{mg}, 36 \%$).

Stepwise Methylation of Methyl Cinnamate Adduct 16.Deprotonation of compound $16(300 \mathrm{mg}, 0.80 \mathrm{mmol})$ with LDA $(0.88 \mathrm{mmol})$ followed by alkylation with methyl iodide $(0.30$ $\mathrm{cm}^{3}, 4.8 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude oil by flash column chromatography on silica gel with diethyl ether as eluent furnished the anti methylated diastereoisomer $17 \mathrm{in} \geqslant 90 \%$ d.e. ($236 \mathrm{mg}, 76 \%$), subsequently recrystallized from ethanol.

Stepwise Allylation of Methyl Cinnamate Adduct 16.Deprotonation of compound $16(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ with LDA $(0.40 \mathrm{mmol})$ followed by alkylation with allyl bromide $(0.20$ $\mathrm{cm}^{3}, 2.3 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude oil by flash column chromatography on silica gel with a petroleum-diethyl ether (4:1) eluent gave the products 21 and 22 as an 8:1 mixture of diastereoisomers ($389 \mathrm{mg}, 70 \%$).

In a second experiment, potassium bis(trimethylsilyl)amide ($0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $4.00 \mathrm{~cm}^{3}, 2.00 \mathrm{mmol}$) was added to a THF ($10 \mathrm{~cm}^{3}$) solution of compound $16(500 \mathrm{mg}$, 1.34 mmol) at $-98^{\circ} \mathrm{C}$. After the reaction mixture had been stirred at this temp. for 1 h , allyl bromide $\left(1.0 \mathrm{~cm}^{3}, 12 \mathrm{mmol}\right.$ was added to it; it was subsequently stirred at $-98^{\circ} \mathrm{C}$ for 2 h and then at $-78^{\circ} \mathrm{C}$ for 2 h . Work-up and chromatography, as described above, gave the products 21 and 22 in the ratio of 8:1 ($422 \mathrm{mg}, 76 \%$).

In a third run, deprotonation of compound 16 ($100 \mathrm{mg}, 0.27$ mmol) was carried out with potassium bis(trimethylsilyl)amide $\left(0.80 \mathrm{~cm}^{3}, 0.40 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$ as described above, and followed by alkylation with allyl iodide $\left(0.20 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}\right.$, freshly distilled). Work-up and chromatography as described above gave the products 21 and 22 in the ratio of $8: 1(388 \mathrm{mg}$, 70%).

Stepwise Benzylation of Methyl Cinnamate Adduct 16.Potassium bis(trimethylsilyl)amide $\left(27.1 \mathrm{~cm}^{3}, 13.6 \mathrm{mmol}\right)$ was added to a THF ($100 \mathrm{~cm}^{3}$) solution of compound $16(3.37 \mathrm{~g}$, 9.03 mmol) at $-78^{\circ} \mathrm{C}$. After the reaction mixture had been stirred at this temp. for 1 h , benzyl bromide $\left(3.20 \mathrm{~cm}^{3}, 27.0\right.$ mmol) was added to it. It was then warmed gradually to room temp. overnight, and worked up as described in procedure (c). Purification of the crude product was accomplished by flash
column chromatography on silica gel with petroleum-diethyl ether ($10: 1$) as eluent. First eluted was the anti benzylated diastereoisomer $19(2.14 \mathrm{~g}, 51 \%)$, subsequently recrystallized from ethanol, followed by a mixed fraction containing both compound 19 and $20(1.20 \mathrm{~g}, 29 \%)$.

Stepwise Methylation of tert-Butyl Cinnamate Adduct 23.Deprotonation of compound 23 ($292 \mathrm{mg}, 0.70 \mathrm{mmol}$) with LDA (1.80 mmol) followed by alkylation with methyl iodide (0.22 $\mathrm{cm}^{3}, 3.5 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude product by flash column chromatography on silica gel with petroleum-diethyl ether (20:1) as eluent furnished the anti methylated diastereoisomer 24 in 94% d.e. as a colourless oil ($210 \mathrm{mg}, 70 \%$).

Stepwise Benzylation of tert-Butyl Cinnamate Adduct 23.Deprotonation of compound 23 ($103 \mathrm{mg}, 0.25 \mathrm{mmol}$) with LDA (0.62 mmol) followed by alkylation with benzyl bromide (0.15 $\mathrm{cm}^{3}, 1.2 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude product was achieved by flash column chromatography on silica gel with petroleum-diethyl ether (20:1) as eluent, which gave the benzylated products 26 and 27 as a $1.25: 1$ mixture ($51 \mathrm{mg}, 41 \%$).

Tandem Enolate Capture with Trimethylsilyl Chloride.-To a solution of $(R)-1(2.36 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a THF ($2 \mathrm{~cm}^{3}$) solution of tert-butyl cinnamate 5 (482 $\mathrm{mg}, 2.36 \mathrm{mmol}$). After the mixture had been stirred for 1 h at $-78^{\circ} \mathrm{C}$, neat trimethylsilyl chloride $\left(0.30 \mathrm{~cm}^{3}, 2.36 \mathrm{mmol}\right.$, freshly distilled from calcium hydride) was added to it by syringe. The reaction mixture was then warmed to room temp. over 30 min and solvent removed to give a brown oil. ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of this crude oil revealed it to consist of approximately 15% starting materials in addition to an 85% yield of the silyl ketene acetal (Z)-28, free from any trace of its geometrical isomer (E)-29.
($\mathrm{Z}, 3 \mathrm{~S}, \alpha \mathrm{R}$)-3-(N -Benzyl- N - α-methylbenzylamino)-1-tert-butoxy-3-phenyl-1-trimethylsiloxypropene ($\mathrm{Z}, 3 \mathrm{~S}, \alpha \mathrm{R})-28 . \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.57-7.11(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.57$ and $4.21(2 \mathrm{H}, 2 \mathrm{~d}, J$ $10.1, \mathrm{CHCO}_{2}$ and CHN), $3.94(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{MeCHN}), 3.86$ and $3.52\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}} 14.9, \mathrm{PhCH}_{2} \mathrm{~N}\right), 1.36\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $1.11(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{MeCH})-0.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 153.8\left(\mathrm{CO}_{2}\right), 147.1,145.2$ and $143.4\left(\mathrm{PhC}_{i p s o}\right), 128.3$, 128.1, 127.9 and $127.1(\mathrm{Ph}), 126.7,126.4$ and $126.2\left(\mathrm{PhC}_{\text {para }}\right)$, $87.6\left(\mathrm{CHCO}_{2}\right), 78.3\left(\mathrm{CMe}_{3}\right), 60.9$ and $59.7(\mathrm{CHN}), 52.2$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 28.7\left(\mathrm{CMe}_{3}\right), 22.3(\mathrm{MeCH})$ and $0.1\left(\mathrm{SiMe}_{3}\right)$.

Stepwise Enolate Capture with Trimethylsilyl Chloride.-To a solution of LDA (2.36 mmol) in THF ($15 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was added a THF ($2 \mathrm{~cm}^{3}$) solution of compound $23(979 \mathrm{mg}, 2.36$ mmol). After the mixture had been stirred for 1 h at $-78^{\circ} \mathrm{C}$, neat trimethylsilyl chloride $\left(0.30 \mathrm{~cm}^{3}, 2.36 \mathrm{mmol}\right.$, freshly distilled from calcium hydride) was added to it by syringe. The reaction mixture was warmed to room temp. over 30 min and then evaporated to give a white oil. ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of this crude oil revealed it to consist of approximately 25% starting material 23 in addition to a 75% yield of the two isomeric silyl ketene acetals (Z)-28 and (E)-29 in the ratio of 1:16.
(E,3S, $\alpha \mathrm{R}$)-3-(N -Benzyl- N - α-methylbenzylamino)-1-tert-butoxy-1-trimethylsiloxy-3-phenylpropene $(\mathrm{E}, 3 \mathrm{~S}, \alpha \mathrm{R})-29 . \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.59-7.12(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.62$ and $4.13(2 \mathrm{H}, 2 \mathrm{~d}, J$ $10.0, \mathrm{CHCO}_{2}$ and CHN), $3.92(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{MeCHN}), 3.79$ and $3.52\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.\mathrm{J}_{\mathrm{AB}} 15.0, \mathrm{PhCH}_{2} \mathrm{~N}\right), 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $1.10(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{MeCH})$ and $0.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{c}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 154.5\left(\mathrm{CO}_{2}\right), 147.1,145.6$ and $143.5\left(\mathrm{PhC}_{i p s o}\right), 128.2$ and $128.0(\mathrm{Ph}), 126.5,126.3$ and $126.1\left(\mathrm{PhC}_{\text {para }}\right), 87.5\left(\mathrm{CHCO}_{2}\right), 78.9$ $\left(\mathrm{CMe}_{3}\right), 60.7$ and $60.1(\mathrm{CHN}), 52.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 29.0\left(\mathrm{CMe}_{3}\right), 21.5$ (MeCH) and $-0.1\left(\mathrm{SiMe}_{3}\right)$.

Tandem Addition-Methylation of tert-Butyl Cinnamate 5 with the Lithium N, N-Dibenzylamide 30.-The conjugate addition of compound $30(1.10 \mathrm{mmol})$ to tert-butyl cinnamate $5(150 \mathrm{mg}$, 0.74 mmol) followed by alkylation with methyl iodide (0.23 $\mathrm{cm}^{3}, 3.7 \mathrm{mmol}$) was carried out according to procedure (b), starting with dibenzylamine. Purification of the crude oil by flash column chromatography on silica gel with petroleumdiethyl ether ($20: 1$) as eluent furnished the syn methylated adduct 31 as a colourless oil in $\geqslant 90 \%$ d.e. ($218 \mathrm{mg}, 71 \%$). Recrystallization from methanol-diethyl ether afforded compound 31 in diastereoisomerically pure form.
tert-Butyl (2SR,3SR)-3-(N,N-dibenzylamino)-2-methyl-3phenylpropionate (2SR,3SR)-31. M.p. $59-61^{\circ} \mathrm{C}$ (Found: C, 80.7; $\mathrm{H}, 8.1 ; \mathrm{N}, 3.4 . \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.93 ; \mathrm{H}, 8.00 ; \mathrm{N}, 3.37 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.47-$ $7.19(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.87$ and $3.02\left[4 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.7$, $\left.\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{~N}\right], 3.75(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{PhCHN}), 3.19(1 \mathrm{H}, \mathrm{dq}, J 6.7$ and $11.5, \mathrm{CHCO}), 1.45(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH})$ and $1.01(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.9\left(\mathrm{CO}_{2}\right), 140.0$ and 135.8 $\left(\mathrm{PhC}_{\text {ipso }}\right), 130.1,129.1,128.6,127.9,127.6$ and $127.2(\mathrm{Ph}), 79.9$ $\left(\mathrm{CMe}_{3}\right), 64.6(\mathrm{CHN}), 53.7\left[\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{~N}\right], 42.7(\mathrm{CHCO}), 27.3$ $\left(\mathrm{CMe}_{3}\right)$ and $16.0(\mathrm{MeCH}) ; m / z 416\left(\mathrm{MH}^{+}, 65 \%\right), 286[90$, $\left.\mathrm{PhCH}=\mathrm{N}^{+}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ and $91\left(100, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Debenzylation of Compound 31.-Debenzylation of compound $31(50 \mathrm{mg}, 0.12 \mathrm{mmol}$) was carried out according to procedure (d). ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude colourless oil (37 mg) served to identify the product as the syn methylated diastereoisomer 32.

Conjugate Addition of Lithium N, N-Dibenzylamide 30 to tertButyl Cinnamate 5.-The conjugate addition of compound $\mathbf{3 0}$ (5.15 mmol) to tert-butyl cinnamate $5(700 \mathrm{mg}, 3.43 \mathrm{mmol}$) was performed according to procedure (a), starting from dibenzylamine. Purification of the crude oil by flash column chromatography on silica gel with petroleum-diethyl ether (10:1) as eluent afforded the conjugate adduct 33 as a white foam $(1.08 \mathrm{~g}$, 79%).
tert-Butyl (RS)-3-(N, N-dibenzylamino)-3-phenylpropionate
(RS)-33. M.p. $64-66^{\circ} \mathrm{C}$ (Found: C, 80.45; H, 7.8; N, 3.5. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.76 ; \mathrm{H}, 7.78 ; \mathrm{N}, 3.49 \%$); $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.20(15$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHN}), 3.72$ and $3.29[4 \mathrm{H}, \mathrm{AB}$ system, J_{AB} 13.7, $\left.\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{~N}\right], 3.00$ and $2.73(2 \mathrm{H}, \mathrm{AB}$ of ABX system, $J_{\mathrm{AB}} 14.4, J_{\mathrm{Ax}} 7.0$ and $\left.J_{\mathrm{BX}} 8.6, \mathrm{CH}_{2} \mathrm{CO}\right)$ and $1.34(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.4\left(\mathrm{CO}_{2}\right), 140.1$ and 138.6 $\left(\mathrm{PhC}_{i p s o}\right)$, 129.1, 128.9, 128.4 and $128.2(\mathrm{Ph}), 127.5$ and 127.1 $\left(\mathrm{PhC}_{\text {para }}\right), 80.5\left(\mathrm{CMe}_{3}\right), 59.2(\mathrm{CHN}), 53.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right)$ and $27.9\left(\mathrm{CMe}_{3}\right) ; m / z 402\left(\mathrm{MH}^{+}, 80 \%\right), 286[40$, $\left.\mathrm{PhCH}=\mathrm{N}^{+}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right], 196\left(55, \mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right)$ and 91 $\left(100, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Stepwise Methylation of tert-Butyl Cinnamate Adduct 33.Deprotonation of compound 33 ($500 \mathrm{mg}, 1.25 \mathrm{mmol}$) with LDA (2.00 mmol) followed by alkylation with methyl iodide (0.39 $\mathrm{cm}^{3}, 6.2 \mathrm{mmol}$) was carried out according to procedure (c). Purification of the crude oil by flash column chromatography on silica gel with petroleum-diethyl ether (20:1) as eluent afforded a white solid made up of the anti and syn methylated diastereoisomers 34 and 31 in the ratio of $1.5: 1$ ($434 \mathrm{mg}, 84 \%$). Although separation of these products by chromatography was not possible, a single recrystallization of the mixture from methanol furnished the anti methylated diastereoisomer 34 in 96% d.e. ($192 \mathrm{mg}, 37 \%$).
tert-Butyl (2RS,3SR)-3-(N,N-dibenzylamino)-2-methyl-3phenylpropionate (2RS,3SR)-34. M.p. $103-106^{\circ} \mathrm{C}$ (Found: C, 81.0; H, 8.2; N, 3.3. $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.93 ; \mathrm{H}, 8.00 ; \mathrm{N}$, $3.37 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$7.62-7.06(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.97$ and $2.96\left[4 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.5$, $\left.\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{~N}\right], 3.90(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{PhC} H \mathrm{~N}), 3.26(1 \mathrm{H}, \mathrm{dq}, J 6.7$ and $11.6, \mathrm{CHCO}$), $1.57\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$ and $0.81(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.1\left(\mathrm{CO}_{2}\right), 139.8$ and 134.9 $\left(\mathrm{PhC}_{i p s o}\right), 129.9,129.4,128.3,127.7$ and $127.1(\mathrm{Ph}), 80.2\left(\mathrm{CMe}_{3}\right)$, $65.6(\mathrm{CHN}), 54.1\left[\left(\mathrm{PhCH}_{2}\right) \mathrm{N}\right], 43.1(\mathrm{CHCO}), 28.2\left(\mathrm{CMe}_{3}\right), 16.2$ $(\mathrm{MeCH}) ; m / z 416\left(\mathrm{MH}^{+}, 50 \%\right), 286\left[50, \mathrm{PhCH}=\mathrm{N}^{+}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ and $91\left(100, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Debenzylation of Compound 17.-To a solution of compound $17(531 \mathrm{mg}, 1.37 \mathrm{mmol})$ in methanol-water-acetic acid (20:2:1, $10 \mathrm{~cm}^{3}$) was added $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ (Pearlman's catalyst, 250 mg) and the resultant black suspension stirred under a hydrogen balloon overnight. The reaction mixture was then filtered through a plug of Celite, washing with methanol and the filtrate concentrated to give a white solid. This residue was dissolved in sat. aq. NaHCO_{3} which was subsequently extracted with dichloromethane. The combined organic extracts were dried (MgSO_{4}), filtered and evaporated to afford the free amino ester 35 as a colourless crystalline solid ($219 \mathrm{mg}, 83 \%$).

Methyl (2R,3S)-3-amino-2-methyl-3-phenylpropionate (2R,-3S)-35. $[\alpha]_{\mathrm{D}}^{25}-29.2\left(c 1.00\right.$ in CHCl_{3}); m.p. $28-29^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.6 ; \mathrm{H}, 8.1 ; \mathrm{N}, 7.0 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 68.37 ; \mathrm{H}, 7.82 ; \mathrm{N}$, $7.25 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 \mathrm{br}(\mathrm{NH})$ and $1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}^{-}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.38-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.03(1 \mathrm{H}, \mathrm{d}, J 9.5$, $\mathrm{PhCHCH}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.71(1 \mathrm{H}, \mathrm{dq}, J 9.5$ and 7.1 , $\mathrm{MeCH}), 1.69\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $0.96(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCH})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.5\left(\mathrm{CO}_{2}\right), 143.7\left(\mathrm{PhC}_{i p s o}\right), 128.6(\mathrm{Ph})$, $127.6\left(\mathrm{PhC}_{\text {para }}\right), 127.1(\mathrm{Ph}), 59.0\left(\mathrm{CHNH}_{2}\right), 51.5(\mathrm{OMe}), 47.9$ (CHCO) and $15.1(\mathrm{MeCH}) ; m / z 194\left(\mathrm{MH}^{+}, 75 \%\right), 177(35$, $\mathrm{MH}^{+}-\mathrm{NH}_{3}$) and $106\left(100, \mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}\right)$.

Hydrolysis of the Methyl Ester 35.-A sample of compound $35(6 \mathrm{mg}, 30 \mu \mathrm{~mol})$ was dissolved in 20% aq. hydrochloric acid $\left(5 \mathrm{~cm}^{3}\right)$ and the solution stirred for 16 h at $100^{\circ} \mathrm{C}$. Removal of solvent by evaporation afforded the β-amino acid hydrochloride salt 38 as a white solid ($6 \mathrm{mg}, 90 \%$).
(2R,3S)-2-Methyl-3-phenyl-3-aminopropionoic acid hydrochloride (2R,3S)-38. $[\alpha]_{\mathrm{D}}^{25}+10.2$ (c 1.94 in MeOH); m.p. 235$240^{\circ} \mathrm{C}$ (dec.) (Found: C, $55.4 ; \mathrm{H}, 6.55 ; \mathrm{N}, 6.5 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 55.69 ; \mathrm{H}, 6.54 ; \mathrm{N}, 6.49 \%$; $v_{\max }(\mathrm{Nujol} \mathrm{mull}) / \mathrm{cm}^{-1}$ $1720,1595,1200$ and $725 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 7.52-7.43$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.42(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{PhCHN}), 3.06(1 \mathrm{H}, \mathrm{dq}, J 7.2$ and $10.0, \mathrm{CHCO})$ and $1.06(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{MeCH}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 177.4\left(\mathrm{CO}_{2}\right), 134.2\left(\mathrm{PhC}_{i p s o}\right), 129.6\left(\mathrm{PhC}_{\text {para }}\right)$ 129.4, 127.4 $(\mathrm{Ph}), 56.6(\mathrm{CHN}), 42.5(\mathrm{CHCO})$ and $13.8(\mathrm{MeCH}) ; m / z 180$ $\left(\mathrm{MH}^{+}, 100 \%\right)$ and $106\left(55, \mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}\right)$.

Hydrolysis of Compound 17.-A solution of compound 17 ($800 \mathrm{mg}, 2.07 \mathrm{mmol}$) and lithium hydroxide monohydrate (5.00 $\mathrm{g}, 120 \mathrm{mmol}$) in methanol-water-THF ($6: 3: 1,50 \mathrm{~cm}^{3}$) was heated at reflux for 4 h . After evaporation of solvent under reduced pressure, the residue was partitioned between diethyl ether and water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give a colourless oil which was purified by flash column chromatography on silica gel. The first fraction, eluted with dichloromethane, consisted of recovered starting material 17 ($130 \mathrm{mg}, 16 \%$); however, the second, eluted with diethyl ether, contained the desired amino acid product 39 (500 $\mathrm{mg}, 64 \%$), obtained as a white foam after evaporation of the solvent.
(2R,3S, $\alpha \mathrm{R}$)-3-(N -Benzyl- N - α-methylbenzylamino)-2-methyl-3phenylpropionic acid $(2 \mathrm{R}, 3 \mathrm{~S}, \alpha \mathrm{R})-39$. $[\alpha]_{\mathrm{D}}^{25}-27.0(c \quad 1.00$ in CHCl_{3}); m.p. $102-104^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 80.2 ; \mathrm{H}, 7.5 ; \mathrm{N}, 3.45$. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{C}, 80.40 ; \mathrm{H}, 7.29 ; \mathrm{N}, 3.75 \%$); $v_{\max }-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700 \mathrm{brs}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52-7.07$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.27$ and $3.71\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, J_{AB} 13.3, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 4.18(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{MeCHN}), 4.11(1 \mathrm{H}, \mathrm{d}, J 11.8$,
$\mathrm{PhCHCH}), 3.02(1 \mathrm{H}, \mathrm{dq}, J 11.8$ and $7.0, \mathrm{CHCO}), 1.18(3 \mathrm{H}, \mathrm{d}, J$ $7.0, \mathrm{MeCH})$ and $0.88(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $177.2\left(\mathrm{CO}_{2}\right), 140.4,136.5$ and $136.3\left(\mathrm{PhC}_{i p s o}\right), 129.8,129.6$, $128.9,128.8,128.7,128.3,128.1$ and $128.0(\mathrm{Ph}), 64.2$ and 57.6 $(\mathrm{CHN}), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.3(\mathrm{CHCO}), 14.8$ and $14.0(\mathrm{MeCH}) ; m / z$ $\left(\mathrm{FAB}^{+}\right) 374\left(\mathrm{M}^{+}, 30 \%\right), 196\left(30, \mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right), 105$ (100, PhCHMe^{+}) and $91\left(30, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Cyclization of Compound 35 to (3R,4S)-3-Methyl-4-phenylazetidinone 37.-To a solution of LDA (2.19 mmol) in THF (10 cm^{3}) at $-78^{\circ} \mathrm{C}$ was added a THF $\left(2 \mathrm{~cm}^{3}\right)$ solution of the methyl ester 35 , causing a pale purple coloration to appear. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 2 h after which the reaction was quenched by the addition of pH 7 aqueous phosphate buffer to the mixture. The residue obtained by evaporation of solvent under reduced pressure was partitioned between diethyl ether and water and the organic phase dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give a yellow solid. This crude product was filtered through a plug of silica, washing with diethyl ether, to afford the β-lactam 37 as a pale yellow solid (85 $\mathrm{mg}, 72 \%$, subsequently recrystallized from diethyl ether-ethyl acetate.
(3R,4S)-3-Methyl-4-phenylazetidinone (3R,4S)-37. $\quad[\alpha]_{\mathrm{D}}^{25}$ $-39.0\left(c 1.00\right.$ in CHCl_{3}); m.p. (lit., ${ }^{14}$) $118-120^{\circ} \mathrm{C}$ (Found: C, $74.6 ; \mathrm{H}, 7.0 ; \mathrm{N}, 8.8 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 74.51 ; \mathrm{H}, 6.88 ; \mathrm{N}$, $8.69 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{NH})$ and $1755 \mathrm{br} \mathrm{s}(\mathrm{C}=\mathrm{O})$; δ_{H} (lit., $\left.{ }^{14,15} ; 300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.47-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.13(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.32(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{PhCHN}), 3.08(1 \mathrm{H}, \mathrm{dq}, J$ 7.5 and $2.3, \mathrm{CHCO}$) and $1.44(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{MeCH})$; δ_{C} (lit., $\left.{ }^{15} ; 50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.2(\mathrm{CON}), 140.2\left(\mathrm{PhC}_{i p s o}\right)$, $129.0(\mathrm{Ph}), 128.3\left(\mathrm{PhC}_{\text {para }}\right), 125.7(\mathrm{Ph}), 59.2(\mathrm{CHN}), 56.4$ (CHCO) and $12.9(\mathrm{MeCH}) ; m / z 162\left(\mathrm{MH}^{+}, 100 \%\right)$ and 106 (20, $\mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}$).

Debenzylation of Compound 24.-Debenzylation of compound $24(1.08 \mathrm{~g}, 2.52 \mathrm{mmol}, 94 \%$ d.e.) was carried out according to procedure (d). Purification of the crude oil ($466 \mathrm{mg}, 79 \%, 94 \%$ d.e.) thus obtained by flash column chromatography on silica gel with diethyl ether-petroleum (2:1) as eluent furnished the free amino ester 36 in diastereoisomerically pure form as a colourless oil ($347 \mathrm{mg}, 59 \%$).
tert-Butyl (2R,3S)-3-amino-2-methyl-3-phenylpropionate (2R,3S)-36. $[\alpha]_{\mathrm{D}}^{25}-37.7\left(c 1.06\right.$ in CHCl_{3}) (Found: C, 71.65 ; H , 9.2; $\mathrm{N}, 5.8 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.46 ; \mathrm{H}, 9.00 ; \mathrm{N}, 5.95 \%$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1715(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34-7.24$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.00(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{PhCHN}), 2.59(1 \mathrm{H}, \mathrm{dq}, J 7.1$ and $9.3, \mathrm{CHCO}), 1.66\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$ and 0.92 (3 H , d, J 7.1, $M e \mathrm{CH}$); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.7\left(\mathrm{CO}_{2}\right)$, $143.7\left(\mathrm{PhC}_{\text {iiso }}\right), 128.7$ and $127.4(\mathrm{Ph}), 127.6\left(\mathrm{PhC}_{\text {para }}\right), 80.6$ $\left.\left(\mathrm{CMe}_{3}\right), 59.0(\mathrm{CHN}), 48.8 \mathrm{CHCO}\right), 28.0\left(\mathrm{CMe}_{3}\right)$ and 15.4 $(M e \mathrm{CH}) ; m / z 236\left(\mathrm{MH}^{+}, 100 \%\right), 180\left(80, \mathrm{MH}^{+}-\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$ and $106\left(70, \mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}\right)$.

Hydrolysis of the tert-Butyl Ester 36.-A solution of compound 36 ($31 \mathrm{mg}, 0.13 \mathrm{mmol}$) in trifluoroacetic acid ($2 \mathrm{~cm}^{3}$) was stirred at room temp. for 2 h . Evaporation of solvent under reduced pressure gave a colourless oil which was dissolved in methanol ($5 \mathrm{~cm}^{3}$). Gaseous hydrogen chloride was bubbled through the solution for 10 s after which it was evaporated to afford the β-amino acid hydrochloride 38 as a white solid ($24 \mathrm{mg}, 84 \%$).

Hydrolysis of the tert-Butyl Ester 24.-A solution of compound $24(110 \mathrm{mg}, 0.26 \mathrm{mmol}, 94 \%$ d.e.) in trifluoroacetic acid (TFA) $\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 2 h . Evaporation of the solvent under reduced pressure gave a colourless oil which was purified by flash column chromatography on silica gel with petroleum-diethyl ether $(1: 1)$ as eluent. The purified TFA salt
was then dissolved in diethyl ether and the solution was washed with aqueous $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ lithium hydroxide. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give the amino acid product 39 as a colourless oil ($50 \mathrm{mg}, 52 \%, 94 \%$ d.e.).

Methanolysis of the tert-Butyl Ester 36.-Gaseous hydrogen chloride was bubbled through a solution of compound 36 (33 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in methanol ($5 \mathrm{~cm}^{3}$) for 1 min after which the reaction mixture was stirred at room temp. overnight. After evaporation of solvent, the residue was partitioned between dichloromethane and sat. aq. NaHCO_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give the free amino ester 35 as a colourless solid ($22 \mathrm{mg}, 81 \%$).

Cyclization of the tert-Butyl Ester 36 to (3R,4S)-3-Methyl4 -phenylazetidinone 37.-In an analogous fashion to that described for the methyl ester 35 above, a sample of compound 36 ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was cyclized to the β-lactam 37 with LDA (0.63 mmol). The crude product was purified by flash column chromatography on silica gel with a diethyl etherpetroleum (2:1) eluent to give the pure β-lactam 37 as a white solid ($20 \mathrm{mg}, 59 \%$).

Debenzylation of Compound 19.-Debenzylation of compound 19 ($350 \mathrm{mg}, 0.76 \mathrm{mmol}$) was carried out according to procedure (d). Purification of the crude product by flash column chromatography on silica gel with diethyl ether as eluent afforded the free amino ester 40 as a white solid (99 $\mathrm{mg}, 49 \%$, subsequently recrystallized from heptane-diethyl ether.

Methyl (2R,3S)-3-amino-2-benzyl-3-phenylpropionate (2R,-3S)-40. $[\alpha]_{\mathrm{D}}^{25}+3.3\left(c 0.48\right.$ in CHCl_{3}); m.p. $51-52^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.2 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.92 ; \mathrm{H}, 7.21 ; \mathrm{N}$, $5.00 \%) ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1730 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 7.41-7.02(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.11(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{PhCHCH})$, $3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.97$ (1 H , ddd, J 10.7, 9.0 and 4.4, CHCO), 2.79 and $2.57\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX system, $J_{\mathrm{AB}} 13.4, J_{\mathrm{AX}} 10.7$ and $\left.J_{\mathrm{BX}} 4.4, \mathrm{PhCH} \mathrm{CH}_{2}\right)$ and $1.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 175.3\left(\mathrm{CO}_{2}\right), 144.1$ and $139.1\left(\mathrm{PhC}_{\text {ipso }}\right), 129.0,128.8$ and $128.6(\mathrm{Ph}), 127.9\left(\mathrm{PhC}_{\text {para }}\right), 127.0(\mathrm{Ph}), 126.6\left(\mathrm{PhC}_{\text {para }}\right), 58.4$ (CHN), $56.3(\mathrm{CHCO}), 51.4(\mathrm{OMe})$ and $36.5\left(\mathrm{CH}_{2} \mathrm{CH}\right) ; m / z 270$ $\left(\mathrm{MH}^{+}, 85 \%\right)$ and $106\left(100, \mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}\right)$.

Hydrolysis of the Methyl Ester 40.-A sample of compound $40(35 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in 20% aq. hydrochloric acid and stirred for 16 h at $100^{\circ} \mathrm{C}$. Evaporation of solvent under reduced pressure afforded the β-amino acid hydrochloride salt 41 as a white solid ($31 \mathrm{mg}, 82 \%$) which was subsequently recrystallized from ethanol.
(2R,3S)-3-Amino-2-benzyl-3-phenylpropionic acid hydrochloride $(2 \mathrm{R}, 3 \mathrm{~S})-40$. $[\alpha]_{\mathrm{D}}^{25}+31.3$ (c 0.90 in MeOH); m.p. $205-$ $210{ }^{\circ} \mathrm{C}$ (dec.) (Found: C, 65.9; H, 6.2; N, 4.8. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 65.94 ; \mathrm{H}, 6.16 ; \mathrm{N}, 4.75 \%$); $v_{\max }\left(\mathrm{Nujol}\right.$ mull) $/ \mathrm{cm}^{-1}$ $1710,1610,720$ and $700 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 7.38-6.92(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.37$ ($1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{PhCHCH}), 3.17$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}$), 2.67 and $2.58\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX system, $J_{\mathrm{AB}} 13.9, J_{\mathrm{AX}} 4.5$ and J_{BX} 9.2, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.5\left(\mathrm{CO}_{2}\right), 138.0$ and $134.8\left(\mathrm{PhC}_{\text {ipso }}\right), 130.6,130.3,129.6,129.4$ and $128.4(\mathrm{Ph}), 127.8$ $\left(\mathrm{PhC}_{\text {para }}\right), 56.8(\mathrm{CHN}), 51.6(\mathrm{CHCO})$ and $35.9\left(\mathrm{CH}_{2} \mathrm{CH}\right) ; \mathrm{m} / \mathrm{z}$ $256\left(\mathrm{MH}^{+}, 25 \%\right)$ and $106\left(100, \mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}\right)$.

Reduction of Compound 19.-A solution of compound 19 $(1.00 \mathrm{~g}, 2.16 \mathrm{mmol})$ and lithium aluminium hydride $(123 \mathrm{mg}$, 3.24 mmol) in THF ($50 \mathrm{~cm}^{3}$) was heated at reflux under an atmosphere of nitrogen for 3 h . The cooled reaction was quenched by the cautious addition of water followed by sufficient 10% aq. hydrochloric acid to render the reaction mixture acidic. After evaporation of solvent under reduced
pressure, the residue was partitioned between diethyl ether and sat. aq. NaHCO_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give a colourless oil which was filtered through a plug of silica, washing with diethyl ether. Final evaporation of that solvent yielded the product alcohol 42 as a white foam ($814 \mathrm{mg}, 87 \%$), subsequently recrystallized from hexane.
(2R,3S, $\alpha \mathrm{R}$)-2-Benzyl-3-(N -benzyl- N - α-methylbenzylamino)-3-phenylpropan-1-ol (2R,3S, α R)-42. $[\alpha]_{\mathrm{D}}^{25}-54.6$ (c 1.00 in CHCl_{3}); m.p. ${ }^{106-108}{ }^{\circ} \mathrm{C}$ (Found: C, 85.6; H, 7.7; N, 3.4. $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}$ requires $\mathrm{C}, 85.48 ; \mathrm{H}, 7.64 ; \mathrm{N}, 3.22 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3570(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.48-$ $6.92(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.26$ and $3.67\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $J_{\mathrm{AB}} 13.2$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 4.19(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{PhCHN}), 3.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.76(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{PhCHCH}), 3.14-3.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\mathrm{OH}), 2.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.15$ and $1.96(2 \mathrm{H}, \mathrm{AB}$ of ABX system, $J_{\mathrm{AB}} 13.6, J_{\mathrm{Ax}} 2.6$ and $J_{\mathrm{BX}} 11.0, \mathrm{PhCH}_{2} \mathrm{CH}$) and 0.94 (3 $\mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.9,141.0,139.6$ and $139.5\left(\mathrm{PhC}_{i p s o}\right), 130.0,129.5,129.1,129.0,128.7,128.3,127.6$, 127.4 and $125.9(\mathrm{Ph}), 64.2(\mathrm{CHN}), 62.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.8(\mathrm{CHN})$, $51.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 43.7\left(\mathrm{CHCH}_{2}\right)$, $34.5\left(\mathrm{PhCH}_{2} \mathrm{CH}\right)$ and 13.0 (MeCH); $m / z 436\left(\mathrm{MH}^{+}, 85 \%\right), 300\left(100, \mathrm{MH}^{+}-\mathrm{Ph}-\right.$ $\left.\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}\right), 196\left(70, \quad \mathrm{PhCH}=\mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{Ph}\right), \quad 105$ (65, PhCHMe^{+}) and $91\left(100, \mathrm{PhCH}_{2}{ }^{+}\right)$.

Acknowledgements

We thank BP International Ltd. for a BP Research Studentship (to I. A. S. W.).

References

1 S. G. Davies and O. Ichihara, Tetrahedron Asymmetry, 1991, 2, 183.
2 S. G. Davies, N. M. Garrido, O. Ichihara and I. A. S. Walters, J. Chem. Soc., Chem. Commun., 1993, 1153.

3 G. Albers-Schönberg, B. H. Arison, O. D. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R.W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morin and B. G. Christensen, J. Am. Chem. Soc., 1978, 100, 6491.

4 K. Yamamoto, T. Yoshioka, Y. Kato, N. Shibamoto, K. Okamura, Y. Shimaguchi and T. Ishikura, J. Antibiot., 1980, 33, 796.

5 (a) O. W. Griffith, Ann. Rev. Biochem., 1986, 55, 855; (b) D. C. Carter, R. E. Moore, J. S. Mynderse, W. P. Niemczura and J. S. Todd, J. Org. Chem., 1984, 49, 236; (c) J. S. Mynderse, A. H. Hunt and R. E. Moore, J. Nat. Prod., 1988, 51, 1299; (d) G. R. Pettit, Y. Kamano, H. Kizu, C. Dufresne, C. L. Herald, R. J. Bontems, J. M Schmidt, F. E. Boettner and R. A. Nieman, Heterocycles, 1989, 28, 553; (e) M. Namikoshi, K. L. Rinehart, A. M. Dahlem, V. R. Beasley and W. W. Carmichael, Tetrahedron Lett., 1989, 30, 4349; (f) T. Tsukuda, H. Kakisawa, P. Painuly and Y. Shimizu, Tetrahedron Lett., 1989, 30, 4245.
6 (a) M. Konishi, M. Nishio, K. Saitoh, T. Miyaki, T. Oki and H. Kawaguchi, J. Antibiot., 1989, 42, 1749; (b) T. Oki, M. Hirano, K. Tomatsu, K. Numata and H. Kamei, J. Antibiot., 1989, 42, 1756; (c) T. Iwamoto, E. Tsujii, M. Ezaki, A. Fujie, S. Hashimoto, M. Okuhara, M. Kohsaka and H. Imanaka, J. Antibiot., 1990, 43, 1; (d) K. Kawabata, Y. Inamoto and K. Sakane, J. Antibiot., 1990, 43, 513; (e) H. Ohki, Y. Inamoto, K. Kawabata, T. Kamimura and K. Sakane, J. Antibiot., 1991, 44, 546.

7 (a) I. Ojima and I. Habus, Tetrahedron Lett., 1990, 31, 4289; (b) C. Gennari, I. Venturini, G. Gislon and G. Schimperna, Tetrahedron Lett., 1987, 28, 227; (c) D. J. Hart and C. S. Lee, J. Am. Chem. Soc., 1986, 108, 6054; (d) M. Furukawa, T. Okawara, T. Noguchi and Y. Terawaki, Chem. Pharm. Bull., 1978, 26, 260; (e) M. Furukawa, T. Okawara, H. Noguchi and Y. Terawaki, Heterocycles, 1977, 6 1323; (f) T. Yamada, H. Suzuki and T. Mukaiyama, Chem. Lett., 1987, 293; (g) H. Kunz and D. Schanzenbach, Angew. Chem., Int. Ed. Engl., 1989, 28, 1068; (h) I. Ojima, I. Habus and M. Zhao, J. Org. Chem., 1991, 56, 1681; (i) E. J. Corey, C. P. Decicco and R. C. Newbold, Tetrahedron Lett., 1991, 32, 5287; (j) K. Hattori, M. Miyata and H. Yamamoto, J. Am. Chem. Soc., 1993, 115, 1151.
8 (a) E. Juaristi, D. Quintana, B. Lamatsch and D. Seebach, J. Org. Chem., 1991, 56, 2553; (b) R. Amoroso, G. Cardillo and C. Tomasini,

Tetrahedron Lett., 1992, 33, 2725; (c) E. Juaristi and D. Quintana, Tetrahedron Asymm., 1992, 3, 723; (d) E. Juaristi and J. Escalante, J. Org. Chem., 1993, 58, 2282; (e) E. Juaristi, J. Escalante, B. Lamatsch and D. Seebach, J. Org. Chem., 1992, 57, 2396.

9 N. Asao, T. Uyehara and Y. Yamamoto, Tetrahedron, 1990, 46, 4563.
10 S. G. Davies, A. J. Edwards and I. A. S. Walters, submitted for publication.
11 S. G. Davies, N. M. Garrido and O. Ichihara, manuscript in preparation.
12 S. G. Davies, O. Ichihara and I. A. S. Walters, following paper.

13 C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523
14 T. Durst, R. Van Den Elzen and R. Legault, Can. J. Chem., 1974, 52, 3206.

15 K. Yamamoto, M. Takagi and J. Tsuji, Bull. Chem. Soc. Jpn., 1988, 61, 319.

Paper 4/00396I
Received 21st January 1994 Accepted 2nd February 1994

